We need to find the adiabatic bulk modulus of a gas at pressure \( P \), expressed in terms of \( \gamma \) and \( P \).
Step 1: Recall the definition of bulk modulus.
The bulk modulus \( K \) is:
\[
K = -V \frac{\Delta P}{\Delta V}
\]
For an adiabatic process: \( P V^\gamma = \text{constant} \).
Step 2: Differentiate the adiabatic condition.
\[
P V^\gamma = C
\]
Differentiate with respect to \( V \):
\[
V^\gamma \frac{dP}{dV} + P \cdot \gamma V^{\gamma - 1} = 0 \implies \frac{dP}{dV} = -\frac{P \gamma}{V}
\]
Step 3: Compute the bulk modulus.
\[
K = -V \frac{dP}{dV} = -V \left( -\frac{P \gamma}{V} \right) = \gamma P
\]
Final Answer:
\[
\boxed{\gamma P}
\]