The acceleration due to gravity \( g \) on the surface of the Earth is given by the formula: \[ g = \frac{GM}{R^2}, \] where:
- \( G \) is the gravitational constant,
- \( M \) is the mass of the Earth,
- \( R \) is the radius of the Earth. If the diameter is reduced to one third of its original value, the new radius \( R' \) becomes: \[ R' = \frac{R}{3}. \] Since mass \( M \) remains unchanged, the new acceleration due to gravity \( g' \) is: \[ g' = \frac{GM}{(R/3)^2} = \frac{GM}{R^2} \times 9 = 9g. \] Thus, the acceleration due to gravity increases by a factor of 9.
Final Answer: \( 9g \).
Match List-I with List-II.
Choose the correct answer from the options given below :
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
A quantity \( X \) is given by: \[ X = \frac{\epsilon_0 L \Delta V}{\Delta t} \] where:
- \( \epsilon_0 \) is the permittivity of free space,
- \( L \) is the length,
- \( \Delta V \) is the potential difference,
- \( \Delta t \) is the time interval.
The dimension of \( X \) is the same as that of:
The least acidic compound, among the following is