The acceleration due to gravity \( g \) on the surface of the Earth is given by the formula: \[ g = \frac{GM}{R^2}, \] where:
- \( G \) is the gravitational constant,
- \( M \) is the mass of the Earth,
- \( R \) is the radius of the Earth. If the diameter is reduced to one third of its original value, the new radius \( R' \) becomes: \[ R' = \frac{R}{3}. \] Since mass \( M \) remains unchanged, the new acceleration due to gravity \( g' \) is: \[ g' = \frac{GM}{(R/3)^2} = \frac{GM}{R^2} \times 9 = 9g. \] Thus, the acceleration due to gravity increases by a factor of 9.
Final Answer: \( 9g \).
Match the LIST-I with LIST-II: 
Choose the correct answer from the options given below:
Match the LIST-I with LIST-II 
Choose the correct answer from the options given below:
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.