We know that:
\[ R = \rho \frac{l}{A}, \quad R \propto \frac{l}{r^2} \]
As we stretch the wire, its length increases, and its radius decreases, keeping the volume constant:
\[ V_i = V_f \]
\[ \pi r^2 l = \pi r_f^2 l_f \implies l_f = 4l \]
Now:
\[ \frac{R_\text{new}}{R_\text{old}} = \frac{l_f}{l} \cdot \frac{r^2}{(r/2)^2} = \frac{4l}{l} \cdot \frac{r^2}{r^2/4} = 4 \cdot 4 = 16 \]
\[ R_\text{new} = 16R \]
Thus, $x = 16$.
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).