We know that:
\[ R = \rho \frac{l}{A}, \quad R \propto \frac{l}{r^2} \]
As we stretch the wire, its length increases, and its radius decreases, keeping the volume constant:
\[ V_i = V_f \]
\[ \pi r^2 l = \pi r_f^2 l_f \implies l_f = 4l \]
Now:
\[ \frac{R_\text{new}}{R_\text{old}} = \frac{l_f}{l} \cdot \frac{r^2}{(r/2)^2} = \frac{4l}{l} \cdot \frac{r^2}{r^2/4} = 4 \cdot 4 = 16 \]
\[ R_\text{new} = 16R \]
Thus, $x = 16$.
Given below are two statements. One is labelled as Assertion (A) and the other is labelled as Reason (R):
Assertion (A): In an insulated container, a gas is adiabatically shrunk to half of its initial volume. The temperature of the gas decreases.
Reason (R): Free expansion of an ideal gas is an irreversible and an adiabatic process.
In the light of the above statements, choose the correct answer from the options given below: