We know that:
\[ R = \rho \frac{l}{A}, \quad R \propto \frac{l}{r^2} \]
As we stretch the wire, its length increases, and its radius decreases, keeping the volume constant:
\[ V_i = V_f \]
\[ \pi r^2 l = \pi r_f^2 l_f \implies l_f = 4l \]
Now:
\[ \frac{R_\text{new}}{R_\text{old}} = \frac{l_f}{l} \cdot \frac{r^2}{(r/2)^2} = \frac{4l}{l} \cdot \frac{r^2}{r^2/4} = 4 \cdot 4 = 16 \]
\[ R_\text{new} = 16R \]
Thus, $x = 16$.
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: