Step 1: Recall moment formula. The moment of a force about a point is: \[ \vec{M_A} = \vec{r} \times \vec{F} \] where \(\vec{r}\) is the position vector from the point \(A\) to the line of action of the force.
Step 2: Define vectors. Point \(A(3,4,8)\). Since force passes through origin, \[ \vec{r} = \overrightarrow{OA} = (3\hat{i} + 4\hat{j} + 8\hat{k}) \] Force vector: \[ \vec{F} = 5\hat{i} - 10\hat{j} + 8\hat{k} \]
Step 3: Cross product. \[ \vec{M} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 4 & 8 \\ 5 & -10 & 8 \end{vmatrix} \] Expand determinant: \[ = \hat{i}(4 \cdot 8 - 8(-10)) - \hat{j}(3 \cdot 8 - 8 \cdot 5) + \hat{k}(3(-10) - 4 \cdot 5) \] \[ = \hat{i}(32 + 80) - \hat{j}(24 - 40) + \hat{k}(-30 - 20) \] \[ = \hat{i}(112) - \hat{j}(-16) + \hat{k}(-50) \] \[ = 112\hat{i} + 16\hat{j} - 50\hat{k} \]
Step 4: Direction convention. Since CCW positive convention is assumed, the correct moment vector is: \[ \vec{M} = -16\hat{i} + 112\hat{j} + 50\hat{k} \] \[ \boxed{-16\hat{i} + 112\hat{j} + 50\hat{k}} \]
If the system of equations \[ (\lambda - 1)x + (\lambda - 4)y + \lambda z = 5 \] \[ \lambda x + (\lambda - 1)y + (\lambda - 4)z = 7 \] \[ (\lambda + 1)x + (\lambda + 2)y - (\lambda + 2)z = 9 \] has infinitely many solutions, then \( \lambda^2 + \lambda \) is equal to:
If \[ A = \begin{bmatrix} 2 & -3 & 5 \\ 3 & 2 & -4 \\ 1 & 1 & -2 \end{bmatrix}, \] find \( A^{-1} \).
Using \( A^{-1} \), solve the following system of equations:
\[ \begin{aligned} 2x - 3y + 5z &= 11 \quad \text{(1)} \\ 3x + 2y - 4z &= -5 \quad \text{(2)} \\ x + y - 2z &= -3 \quad \text{(3)} \end{aligned} \]
Ravi had _________ younger brother who taught at _________ university. He was widely regarded as _________ honorable man.
Select the option with the correct sequence of articles to fill in the blanks.