A uniform solid cylinder with radius \(R\) and length \(L\) has a moment of inertia \(I_1\) about the axis of the cylinder. A concentric solid cylinder of radius \(R' = \frac{R}{2}\) and length \(L' = \frac{L}{2}\) is carved out of the original cylinder. If \(I_2\) is the moment of inertia of the carved-out portion, then \(\frac{I_1}{I_2} =\)
(Both \(I_1\) and \(I_2\) are about the axis of the cylinder.)
The moment of inertia for a uniform solid cylinder about its axis is:
\[ I = \frac{1}{2} m R^2 \]
\[ I_1 = \frac{1}{2} m_1 R^2 \]
The mass of the carved-out portion (\(m_2\)) is proportional to its volume:
\[ m_2 = \rho \cdot \text{Volume} = \rho \cdot \pi \left(\frac{R}{2}\right)^2 \cdot \frac{L}{2} = \frac{\rho \pi R^2 L}{8} \]
Moment of inertia:
\[ I_2 = \frac{1}{2} m_2 \left(\frac{R}{2}\right)^2 = \frac{1}{2} \cdot \frac{\rho \pi R^2 L}{8} \cdot \frac{R^2}{4} = \frac{\rho \pi R^4 L}{64} \]
The mass of the original cylinder (\(m_1\)) is:
\[ m_1 = \rho \cdot \pi R^2 L \]
Moment of inertia of the original cylinder:
\[ I_1 = \frac{1}{2} m_1 R^2 = \frac{1}{2} \cdot \rho \pi R^2 L \cdot R^2 = \frac{\rho \pi R^4 L}{2} \]
The ratio is:
\[ \frac{I_1}{I_2} = \frac{\frac{\rho \pi R^4 L}{2}}{\frac{\rho \pi R^4 L}{64}} = \frac{64}{2} = 32 \]
The correct answer is 32.
I1=2m1R2I2=2m2(R/2)2
I2I1=m24m1=ρ⋅4πR2×2ℓ4⋅ρπR2ℓ⇒I2I1=32
A circular disc has radius \( R_1 \) and thickness \( T_1 \). Another circular disc made of the same material has radius \( R_2 \) and thickness \( T_2 \). If the moments of inertia of both the discs are same and \[ \frac{R_1}{R_2} = 2, \quad \text{then} \quad \frac{T_1}{T_2} = \frac{1}{\alpha}. \] The value of \( \alpha \) is __________.
A solid cylinder of radius $\dfrac{R}{3}$ and length $\dfrac{L}{2}$ is removed along the central axis. Find ratio of initial moment of inertia and moment of inertia of removed cylinder. 
Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: