Step 1: Understand the motion of the elevator The vertical position of the elevator is given by: \[ y(t) = 8\left[1 + \sin\left(\frac{2\pi t}{T}\right)\right] \] This is a sinusoidal function, indicating vertical oscillatory motion.
Step 2: Find the acceleration of the elevator Acceleration is the second derivative of position with respect to time: \[ a(t) = \frac{d^2 y}{dt^2} \] First derivative: \[ \frac{dy}{dt} = 8 \cdot \cos\left(\frac{2\pi t}{T}\right) \cdot \left(\frac{2\pi}{T}\right) \] Second derivative: \[ \frac{d^2 y}{dt^2} = -8 \cdot \sin\left(\frac{2\pi t}{T}\right) \cdot \left(\frac{2\pi}{T}\right)^2 \] Substitute \( T = 40\pi \): \[ a(t) = -8 \cdot \left(\frac{2\pi}{40\pi}\right)^2 \cdot \sin\left(\frac{2\pi t}{40\pi}\right) = -8 \cdot \left(\frac{1}{20}\right)^2 \cdot \sin\left(\frac{t}{20}\right) = -\frac{8}{400} \cdot \sin\left(\frac{t}{20}\right) = -0.02 \cdot \sin\left(\frac{t}{20}\right) \, \text{m/s}^2 \]
Step 3: Maximum acceleration The sine function has maximum absolute value 1, so: \[ a_{\text{max}} = 0.02 \, \text{m/s}^2 \]
Step 4: Maximum variation in apparent weight Apparent weight in an accelerating elevator is given by: \[ W_{\text{apparent}} = m(g + a) \] Thus, the variation in apparent weight is: \[ \Delta W = m \cdot a_{\text{max}} = 50 \cdot 0.02 = 1 \, \text{N} \]
A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of inertia of the smaller sphere to that of the rest part of the sphere about the Y-axis is :
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____