(a) Let Rs \(x\) be invested in the first bond. Then, the sum of money invested in the second bond will be Rs\( (30000 − x).\) It is given that the first bond pays \(5\)% interest per year and the second bond pays \(7%\) % interest per year. Therefore, in order to obtain an annual total interest of Rs \(1800\), we have: \(\begin{bmatrix}x&(30000-x)\end{bmatrix}\begin{bmatrix}\frac{5}{100}\\\frac{7}{100}\end{bmatrix}=1800\) \([\)S.I for 1 year=\(\frac{Principal*Rate}{100}]\)
\(\Rightarrow\frac{5x}{100}+\frac{7(30000-x)}{100}=1800\)
\(\Rightarrow\) \(5x+210000-7x=180000\)
\(\Rightarrow\) \(210000-2x=180000\)
\(\Rightarrow\) \(2x=210000-180000\)
\(\Rightarrow\) \(x=15000\)
Thus, in order to obtain an annual total interest of Rs \(1800\), the trust fund should invest
Rs 15000 in the first bond and the remaining Rs \(15000\) in the second bond.
(b) Let Rs \(x\) be invested in the first bond. Then, the sum of money invested in the second bond will be Rs (\(30000 − x\)).
Therefore, in order to obtain an annual total interest of Rs \(2000\), we have:
\(\begin{bmatrix}x&(30000-x)\end{bmatrix}\begin{bmatrix}\frac{5}{100}\\\frac{7}{100}\end{bmatrix}=2000\)
\(\Rightarrow \frac{5x}{100}+\frac{7(30000-x)}{100}=2000\)
\(\Rightarrow\) \(5x+210000-7x=200000\)
\(\Rightarrow\) \(2x=210000-20000\)
\(\Rightarrow\) \(x=5000\)
Thus, in order to obtain an annual total interest of Rs \( 2000,\) the trust fund should invest Rs \(5,000\) in the first bond and the remaining Rs \( 25000\) in the second bond.
Let
\( A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{bmatrix} \)
and \(|2A|^3 = 2^{21}\) where \(\alpha, \beta \in \mathbb{Z}\). Then a value of \(\alpha\) is:
What is the Planning Process?
Evaluate \(\begin{vmatrix} cos\alpha cos\beta &cos\alpha sin\beta &-sin\alpha \\ -sin\beta&cos\beta &0 \\ sin\alpha cos\beta&sin\alpha\sin\beta &cos\alpha \end{vmatrix}\)