Using the first law of thermodynamics:
\[\Delta Q = \Delta U + W\]
\[31\]
Given:
\[+48 = n C_V \Delta T + W\]
For helium (a monoatomic gas), \( C_V = \frac{3R}{2} \):
\[48 = (1) \left( \frac{3R}{2} \right) (2) + W\]
Simplifying:
\[W = 48 - 3 \times R\]
Substitute \( R = 8.3 \):
\[W = 48 - 3 \times (8.3)\]
\[W = 23.1 \, \text{Joule}\]
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: