Using the first law of thermodynamics:
\[\Delta Q = \Delta U + W\]
\[31\]
Given:
\[+48 = n C_V \Delta T + W\]
For helium (a monoatomic gas), \( C_V = \frac{3R}{2} \):
\[48 = (1) \left( \frac{3R}{2} \right) (2) + W\]
Simplifying:
\[W = 48 - 3 \times R\]
Substitute \( R = 8.3 \):
\[W = 48 - 3 \times (8.3)\]
\[W = 23.1 \, \text{Joule}\]
Choose the correct set of reagents for the following conversion:
A bead of mass \( m \) slides without friction on the wall of a vertical circular hoop of radius \( R \) as shown in figure. The bead moves under the combined action of gravity and a massless spring \( k \) attached to the bottom of the hoop. The equilibrium length of the spring is \( R \). If the bead is released from the top of the hoop with (negligible) zero initial speed, the velocity of the bead, when the length of spring becomes \( R \), would be (spring constant is \( k \), \( g \) is acceleration due to gravity):