Using the first law of thermodynamics:
\[\Delta Q = \Delta U + W\]
\[31\]
Given:
\[+48 = n C_V \Delta T + W\]
For helium (a monoatomic gas), \( C_V = \frac{3R}{2} \):
\[48 = (1) \left( \frac{3R}{2} \right) (2) + W\]
Simplifying:
\[W = 48 - 3 \times R\]
Substitute \( R = 8.3 \):
\[W = 48 - 3 \times (8.3)\]
\[W = 23.1 \, \text{Joule}\]
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).