The absolute error in measurement using the screw gauge is the least count, i.e., \( 0.05 \) mm.
Fractional error in length measurement: \[ \frac{\Delta L}{L} = \frac{0.05}{5} = 0.01 \]
Fractional error in breadth measurement: \[ \frac{\Delta B}{B} = \frac{0.05}{2.5} = 0.02 \]
Area, \( A = L \times B \)
Maximum fractional error in area: \[ \left( \frac{\Delta A}{A} \right)_{\text{max}} = \left( \frac{\Delta L}{L} + \frac{\Delta B}{B} \right) \] \[ = 0.01 + 0.02 = 0.03 \]
The fractional error is given as \( \frac{x}{100} \). \[ 0.03 = \frac{x}{100} \] \[ x = 3 \]
\[ \boldsymbol{x = 3} \]
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: