The linear charge density \(\lambda\) of the ring is:
\[ \lambda = \frac{Q}{2 \pi R} = \frac{2\pi}{2\pi \times 0.3} = \frac{1}{0.3} \, \text{C/m} \]
The force \( F_e \) due to a small element of charge \( dq \) at an angle \(\theta\) on the ring is balanced by tension \( T \) in the ring:
\[ 2T \sin \frac{d\theta}{2} = \frac{kq_0 \lambda d\theta}{R^2} \]
Expanding and simplifying for \( T \):
\[ T = \frac{kq_0 \lambda}{2R} \]
Substitute \( k = 9 \times 10^9 \), \( q_0 = 30 \times 10^{-12} \, \text{C} \), \( R = 0.3 \, \text{m} \):
\[ T = \frac{9 \times 10^9 \times 30 \times 10^{-12}}{2 \times 0.3} \]
\[ T = 48 \, \text{N} \]

In the first configuration (1) as shown in the figure, four identical charges \( q_0 \) are kept at the corners A, B, C and D of square of side length \( a \). In the second configuration (2), the same charges are shifted to mid points C, E, H, and F of the square. If \( K = \frac{1}{4\pi \epsilon_0} \), the difference between the potential energies of configuration (2) and (1) is given by:
If \( S \) and \( S' \) are the foci of the ellipse \[ \frac{x^2}{18} + \frac{y^2}{9} = 1 \] and \( P \) is a point on the ellipse, then \[ \min (SP \cdot S'P) + \max (SP \cdot S'P) \] is equal to:

Given below are two statements I and II.
Statement I: Dumas method is used for estimation of "Nitrogen" in an organic compound.
Statement II: Dumas method involves the formation of ammonium sulfate by heating the organic compound with concentrated H\(_2\)SO\(_4\). In the light of the above statements, choose the correct answer from the options given below: