The linear charge density \(\lambda\) of the ring is:
\[ \lambda = \frac{Q}{2 \pi R} = \frac{2\pi}{2\pi \times 0.3} = \frac{1}{0.3} \, \text{C/m} \]
The force \( F_e \) due to a small element of charge \( dq \) at an angle \(\theta\) on the ring is balanced by tension \( T \) in the ring:
\[ 2T \sin \frac{d\theta}{2} = \frac{kq_0 \lambda d\theta}{R^2} \]
Expanding and simplifying for \( T \):
\[ T = \frac{kq_0 \lambda}{2R} \]
Substitute \( k = 9 \times 10^9 \), \( q_0 = 30 \times 10^{-12} \, \text{C} \), \( R = 0.3 \, \text{m} \):
\[ T = \frac{9 \times 10^9 \times 30 \times 10^{-12}}{2 \times 0.3} \]
\[ T = 48 \, \text{N} \]
Match List-I with List-II.
Choose the correct answer from the options given below :}
There are three co-centric conducting spherical shells $A$, $B$ and $C$ of radii $a$, $b$ and $c$ respectively $(c>b>a)$ and they are charged with charges $q_1$, $q_2$ and $q_3$ respectively. The potentials of the spheres $A$, $B$ and $C$ respectively are:
Two resistors $2\,\Omega$ and $3\,\Omega$ are connected in the gaps of a bridge as shown in the figure. The null point is obtained with the contact of jockey at some point on wire $XY$. When an unknown resistor is connected in parallel with $3\,\Omega$ resistor, the null point is shifted by $22.5\,\text{cm}$ towards $Y$. The resistance of unknown resistor is ___ $\Omega$. 
Six point charges are kept \(60^\circ\) apart from each other on the circumference of a circle of radius \( R \) as shown in figure. The net electric field at the center of the circle is ___________. (\( \varepsilon_0 \) is permittivity of free space) 
A Wheatstone bridge is initially at room temperature and all arms of the bridge have same value of resistances \[ (R_1=R_2=R_3=R_4). \] When \(R_3\) resistance is heated, its resistance value increases by \(10%\). The potential difference \((V_a-V_b)\) after \(R_3\) is heated is _______ V. 