The linear charge density \(\lambda\) of the ring is:
\[ \lambda = \frac{Q}{2 \pi R} = \frac{2\pi}{2\pi \times 0.3} = \frac{1}{0.3} \, \text{C/m} \]
The force \( F_e \) due to a small element of charge \( dq \) at an angle \(\theta\) on the ring is balanced by tension \( T \) in the ring:
\[ 2T \sin \frac{d\theta}{2} = \frac{kq_0 \lambda d\theta}{R^2} \]
Expanding and simplifying for \( T \):
\[ T = \frac{kq_0 \lambda}{2R} \]
Substitute \( k = 9 \times 10^9 \), \( q_0 = 30 \times 10^{-12} \, \text{C} \), \( R = 0.3 \, \text{m} \):
\[ T = \frac{9 \times 10^9 \times 30 \times 10^{-12}}{2 \times 0.3} \]
\[ T = 48 \, \text{N} \]
Match List - I with List - II:
List - I:
(A) Electric field inside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(B) Electric field at distance \( r > 0 \) from a uniformly charged infinite plane sheet with surface charge density \( \sigma \).
(C) Electric field outside (distance \( r > 0 \) from center) of a uniformly charged spherical shell with surface charge density \( \sigma \), and radius \( R \).
(D) Electric field between two oppositely charged infinite plane parallel sheets with uniform surface charge density \( \sigma \).
List - II:
(I) \( \frac{\sigma}{\epsilon_0} \)
(II) \( \frac{\sigma}{2\epsilon_0} \)
(III) 0
(IV) \( \frac{\sigma}{\epsilon_0 r^2} \) Choose the correct answer from the options given below: