The final value theorem states that for a transfer function \( G(s) \), the final output value is:
\[
y(t) \to \lim_{s \to 0} s G(s) \cdot M
\]
Substitute the given transfer function:
\[
\lim_{s \to 0} s \times \frac{3e^{-4s}}{12s^2 + 1} = \frac{3}{12} = 0.25
\]
Thus, the final output is:
\[
0.25M = 120 $\Rightarrow$ M = 480
\]
Thus, the value of \( M \) is:
\[
\boxed{102.4}
\]