Step 1: Open-loop transfer function with proportional controller gain \(K_c\): \[ G(s) = K_c \cdot \frac{0.25(1-s)}{s(2s+1)}. \]
Step 2: Closed-loop characteristic equation: \[ 1+G(s)=0 \;\;\Rightarrow\;\; 1+ \frac{0.25K_c(1-s)}{s(2s+1)}=0. \] Multiply through: \[ s(2s+1) + 0.25K_c(1-s) = 0. \]
Step 3: Simplify: \[ 2s^2 + s + 0.25K_c -0.25K_c s = 0, \] \[ 2s^2 + \big(1-0.25K_c\big)s + 0.25K_c=0. \]
Step 4: For decaying oscillations, the system must be underdamped (complex roots with negative real parts). Condition: \[ \Delta = b^2 - 4ac < 0, \] where \(a=2,\; b=(1-0.25K_c),\; c=0.25K_c\). \[ \Delta=(1-0.25K_c)^2 - 2K_c. \]
Step 5: Test given options:
Final Answer: \[ \boxed{K_c = 2} \]


