Step 1: Loop reduction up to the point where \(d_2\) enters
Let \(G_1(s)=\dfrac{1}{0.1s+1}\) and \(G_2(s)=\dfrac{1}{s+1}\). From the diagram, the signal entering the \(d_2\)-summer comes from a unity gain followed by a controller of gain \(10\), and there is an outer unity feedback from \(y\) to the first summer (error \(=y_{\text{set}}-y\)). With \(y_{\text{set}}=0\) (for disturbance transfer) the path from \(y\) back to the \(d_2\)-summer through the controller forms a feedback around the plant. The equivalent forward block from the \(d_2\)-summer to \(y\) is \(G_1G_2\) with a feedback path of gain \(10\).
Step 2: Closed-loop due to the controller feedback
Writing the closed-loop relation at the \(d_2\)-injection node (call its signal \(u\)): \[ y \;=\; G_1G_2\big(d_2 - 10\,y\big) \quad\Rightarrow\quad y\big(1+10G_1G_2\big)=G_1G_2\,d_2 . \] Hence \[ \frac{y}{d_2}=\frac{G_1G_2}{1+10G_1G_2} = \frac{1}{(0.1s+1)(s+1)+10}. \]
Step 3: Rearrangement to the factored form
\[ (0.1s+1)(s+1)+10 =0.1s^2+1.1s+11 = (0.1s+1)(11s+21). \] Therefore \[ G_{d2}(s)=\frac{1}{(11s+21)(0.1s+1)}. \] This matches option (A).
A color model is shown in the figure with color codes: Yellow (Y), Magenta (M), Cyan (Cy), Red (R), Blue (Bl), Green (G), and Black (K). Which one of the following options displays the color codes that are consistent with the color model?