Step 1: Dynamic balance on the tank (cross-sectional area \(A=20\)):
\[
A\frac{dh}{dt}=F_{in}-F_{out},\qquad F_{out}=k\sqrt{h}.
\]
Use steady state \(F_{in}=F_{out}=10\) at \(h=16\) to find \(k\):
\[
10=k\sqrt{16}=4k \;\Rightarrow\; k=2.5~\frac{\text{cm}^3}{\text{s}\,\sqrt{\text{cm}}}.
\]
Step 2: Linearize about steady state. Let deviations be \(h'=h-h_{ss}\), \(f'_{in}=F_{in}-F_{in,ss}\).
\[
A\frac{dh'}{dt}=f'_{in}-\left.\frac{dF_{out}}{dh}\right|_{ss} h', \qquad
\left.\frac{dF_{out}}{dh}\right|_{ss}=\frac{k}{2\sqrt{h_{ss}}}=\frac{2.5}{2\cdot4}=0.3125~\frac{\text{cm}^3}{\text{s}\,\text{cm}}.
\]
Step 3: Put into standard first-order form \(A\frac{dh'}{dt}+\left.\dfrac{dF_{out}}{dh}\right|_{ss} h' = f'_{in}\).
Hence the time constant is
\[
\tau=\frac{A}{\left.\dfrac{dF_{out}}{dh}\right|_{ss}}=\frac{20}{0.3125}=64~\text{s}.
\]
\(\boxed{\tau=64~\text{s}}\).