Step 1: The step response of a FOPDT model \(K\,\dfrac{1}{\tau s+1}e^{-Ls}\) is
\[
y(t)=K\left[1-e^{-(t-L)/\tau}\right]u(t-L).
\]
Here \(K=1.05,\ \tau=2,\ L=1\).
Step 2: Set \(y(t)=1\) and solve for \(t\ge L\):
\[
1=1.05\Big(1-e^{-(t-1)/2}\Big)
\;\Rightarrow\;
e^{-(t-1)/2}=1-\frac{1}{1.05}=\frac{1}{21}.
\]
\[
\frac{t-1}{2}=\ln 21 \;\Rightarrow\; t=1+2\ln 21=1+2(3.044522)=7.089\ \text{time units}.
\]
Rounded to two decimals: \(\boxed{7.09}\).