
Initial position of the car is C, which changes to D after six seconds.
In ∆ADB,
\(\frac{AB}{ DB} = tan 60^{\degree}\)
\(\frac{AB}{ DB} = \sqrt3\)
\(DB = \frac{AB} { \sqrt3}\)
In ∆ABC,
\(\frac{AB}{ BC}= tan 30^{\degree}\)
\(\frac{ AB }{ BD + DC} = \frac1{ \sqrt3}\)
\(AB \sqrt3 = BD + DC \)
\( AB \sqrt3 = \frac{AB }{\sqrt3} + DC\)
\( DC = AB \sqrt3 -\frac{ AB}{ \sqrt3} = AB (\sqrt3- \frac{1}{ \sqrt3})\)
\(\)\(DC= \frac{2AB}{ \sqrt3}\)
Time taken by the car to travel distance DC= (i.e., \(\frac{2AB}{ \sqrt3}\)) = 6 seconds
Time taken by the car to travel distance DB (i.e., \(\frac{AB}{ \sqrt3}\) ) = \(\frac{6}{\frac{ 2AB}{ \sqrt3}} \times \frac{AB}{ \sqrt3}\) = \(\frac 6{2}\) = 3 seconds.
The shadow of a tower on level ground is $30\ \text{m}$ longer when the sun's altitude is $30^\circ$ than when it is $60^\circ$. Find the height of the tower. (Use $\sqrt{3}=1.732$.)
आप अदिति / आदित्य हैं। आपकी दादीजी को खेलों में अत्यधिक रुचि है। ओलंपिक खेल-2024 में भारत के प्रदर्शन के बारे में जानकारी देते हुए लगभग 100 शब्दों में पत्र लिखिए।