Let AB be the statue, BC be the pedestal, and D be the point on the ground from where the elevation angles are to be measured.
In ∆BCD,
\(\frac{BC}{CD} = tan 45°\)
\(\frac{BC}{ CD} = 1 \)
\(BC = CD\)
In ∆ACD,
\(\frac{AB + BC}{ BC} = tan 60°\)
\(\frac{AB + BC }{ BC} = \sqrt3\)
\(1.6 + BC = BC \sqrt3\)
\(BC = (\sqrt3 -1) = 1.6\)
\(BC =\frac{ (1.6) (\sqrt3 +1)}{ (\sqrt3 -1) (\sqrt3+ 1)}\)
\(BC = \frac{1.6 (\sqrt3+1)}{ (\sqrt3)^2 - (1)^2}\)
\(BC = \frac{1.6 (\sqrt3 +1)}2 = 0.8\, (\sqrt3 +1)\)
Therefore, the height of the pedestal is\(0.8\, (\sqrt3 +1)\) m.
The shadow of a tower on level ground is $30\ \text{m}$ longer when the sun's altitude is $30^\circ$ than when it is $60^\circ$. Find the height of the tower. (Use $\sqrt{3}=1.732$.)
‘दीवार खड़ी करना’ मुहावरे का वाक्य में इस प्रकार प्रयोग करें कि अर्थ स्पष्ट हो जाए।
Select from the following a statement which is not true about the burning of magnesium ribbon in air:
Analyze the significant changes in printing technology during 19th century in the world.
निम्नलिखित विषय पर संकेत बिंदुओं के आधार पर लगभग 120 शब्दों में एक अनुच्छेद लिखिए |
डिजिटल इंडिया
संकेत बिंदु -
डिजिटल इंडिया क्या है
डिजिटल होने के लाभ
सरकार द्वारा उठाए गए कदम