The correct answer is 48
\(Y=\frac{FI}{AΔI}\)
\(ΔI=\frac{Fl}{YA}\)
\(=\frac{18×10^4×60×10^{−2}}{25×10^{9}×60×15×10^{−4}}\)
\(=48×10^{−6} m\)
A 2 $\text{kg}$ mass is attached to a spring with spring constant $ k = 200, \text{N/m} $. If the mass is displaced by $ 0.1, \text{m} $, what is the potential energy stored in the spring?
Consider the following molecules:
The order of rate of hydrolysis is:
Two cells of emf 1V and 2V and internal resistance 2 \( \Omega \) and 1 \( \Omega \), respectively, are connected in series with an external resistance of 6 \( \Omega \). The total current in the circuit is \( I_1 \). Now the same two cells in parallel configuration are connected to the same external resistance. In this case, the total current drawn is \( I_2 \). The value of \( \left( \frac{I_1}{I_2} \right) \) is \( \frac{x}{3} \). The value of x is 1cm.
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
Mechanical properties of solids intricate the characteristics such as the resistance to deformation and their strength. Strength is the ability of an object to resist the applied stress, to what extent can it bear the stress.