

Step 1. Calculate the Total Force Acting on Block R: The total force on block R due to its weight is:
\( F = m \times g = 3 \, \text{kg} \times 10 \, \text{m/s}^2 = 30 \, \text{N} \)
Step 2. Determine the Tension T1 in Wire B: Assuming the system is in equilibrium, the net force acting on P, Q, and R needs to balance out, with wire B supporting the tension:
\( T_1 = F - T_2 = 20 \, \text{N} \)
Step 3. Calculate Longitudinal Strain: Strain = \( \frac{\text{stress}}{Y} \) where stress = \( \frac{T_1}{A} \) and \( A = 0.005 \, \text{cm}^2 = 0.5 \times 10^{-6} \, \text{m}^2 \):
\( \text{strain} = \frac{T_1}{A \times Y} = \frac{20}{0.5 \times 10^{-6} \times 2 \times 10^{11}} = 2 \times 10^{-4} \)
A 2 $\text{kg}$ mass is attached to a spring with spring constant $ k = 200, \text{N/m} $. If the mass is displaced by $ 0.1, \text{m} $, what is the potential energy stored in the spring?
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.