The kinetic energy is related to velocity as:
\[
\frac{1}{2} m v^2 = \text{KE}
\]
Substitute the given values (\(m = 2 \, \text{kg}, \, \text{KE} = 10000 \, \text{J}\)):
\[
\frac{1}{2} \cdot 2 \cdot v^2 = 10000
\]
\[
v^2 = 10000, \quad v = 100 \, \text{m/s}
\]
The acceleration is found using:
\[
v = u + at
\]
Since the body starts from rest (\(u = 0\)) and reaches \(v = 100 \, \text{m/s}\) in \(t = 5 \, \text{s}\):
\[
100 = 0 + a \cdot 5 \implies a = \frac{100}{5} = 20 \, \text{m/s}^2
\]
The force acting on the body is:
\[
F = m \cdot a = 2 \cdot 20 = 40 \, \text{N}
\]