The terminal velocity \( V_T \) of the spherical ball in water is given by Stokes' law:
\[ V_T = \frac{2gR^2}{9\eta} (\rho_B - \rho_L), \]
where:
Substitute the values into the formula:
\[ V_T = \frac{2 \cdot 9.8 \cdot (1 \times 10^{-4})^2}{9 \cdot 9.8 \times 10^{-6}} (10^5 - 10^3). \]
\[ V_T = \frac{2}{9} \cdot \frac{10 \cdot (10^{-4})^2}{9.8 \times 10^{-6}} \cdot (10^5 - 10^3), \]
\[ V_T = \frac{2}{9} \cdot \frac{10 \cdot 10^{-8}}{9.8 \times 10^{-6}} \cdot (10^5 - 10^3), \]
\[ V_T = \frac{2}{9} \cdot \frac{10}{9.8} \cdot 10^2 = 224.5 \, \text{m/s}. \]
\[ V = \sqrt{2gh}. \]
Rearranging for \( h \):
\[ h = \frac{V^2}{2g}. \]
Substitute \( V_T = 224.5 \, \text{m/s} \) and \( g = 9.8 \, \text{m/s}^2 \):
\[ h = \frac{(224.5)^2}{2 \cdot 9.8}. \]
\[ h = \frac{50402.25}{19.6} \approx 2571 \, \text{m}. \]
Thus, the height \( h \) is approximately:
\[ \boxed{2518 \, \text{m}}. \]