\(\frac{v}{4}\)
Since the density of the medium is negligible, the buoyancy force can be ignored. At terminal velocity, the gravitational force on the ball is balanced by the viscous drag force. The terminal velocity \( v \) is given by:
\[ v \propto \frac{1}{r}, \]for a sphere of constant mass.
Let the terminal velocity of the original ball (radius \( r \)) be \( v \) and the terminal velocity of the larger ball (radius \( 2r \)) be \( v' \).
Using the inverse proportionality:
\[ \frac{v}{v'} = \frac{r'}{r}. \]Since \( r' = 2r \):
\[ \frac{v}{v'} = 2 \implies v' = \frac{v}{2}. \]Thus, the terminal velocity of the larger ball is:
\[ \frac{v}{2}. \]