To find the number of photons emitted per second, we use the formula for energy of a photon, \(E = h \cdot f\), where \(h\) is Planck's constant \((6.626 \times 10^{-34} \, \text{Js})\) and \(f\) is the frequency. We can rearrange this to find the number of photons:
\(E = 6.626 \times 10^{-34} \, \text{Js} \times 5.0 \times 10^{14} \, \text{Hz} = 3.313 \times 10^{-19} \, \text{J}\)
\(n = \dfrac{\text{Power}}{\text{Energy per photon}} = \dfrac{3.31 \times 10^{-3} \, \text{W}}{3.313 \times 10^{-19} \, \text{J/photon}}\)
\(n = \dfrac{3.31 \times 10^{-3}}{3.313 \times 10^{-19}} \approx 1.0 \times 10^{16}\)
Therefore, the number of photons emitted per second is approximately \(10^{16}\). The correct option is: \(10^{16}\)

| S. No. | Particulars | Amount (in ₹ crore) |
|---|---|---|
| (i) | Operating Surplus | 3,740 |
| (ii) | Increase in unsold stock | 600 |
| (iii) | Sales | 10,625 |
| (iv) | Purchase of raw materials | 2,625 |
| (v) | Consumption of fixed capital | 500 |
| (vi) | Subsidies | 400 |
| (vii) | Indirect taxes | 1,200 |