To find the number of photons emitted per second, we use the formula for energy of a photon, \(E = h \cdot f\), where \(h\) is Planck's constant \((6.626 \times 10^{-34} \, \text{Js})\) and \(f\) is the frequency. We can rearrange this to find the number of photons:
\(E = 6.626 \times 10^{-34} \, \text{Js} \times 5.0 \times 10^{14} \, \text{Hz} = 3.313 \times 10^{-19} \, \text{J}\)
\(n = \dfrac{\text{Power}}{\text{Energy per photon}} = \dfrac{3.31 \times 10^{-3} \, \text{W}}{3.313 \times 10^{-19} \, \text{J/photon}}\)
\(n = \dfrac{3.31 \times 10^{-3}}{3.313 \times 10^{-19}} \approx 1.0 \times 10^{16}\)
Therefore, the number of photons emitted per second is approximately \(10^{16}\). The correct option is: \(10^{16}\)
Use the given information to select the amino acid attached to the 3′ end of tRNA during the process of translation, if the coding strand of the structural gene being transcribed has the nucleotide sequence TAC.
Balance Sheet of Chandan, Deepak and Elvish as at 31st March, 2024
Liabilities | Amount (₹) | Assets | Amount (₹) |
---|---|---|---|
Capitals: | Fixed Assets | 27,00,000 | |
Chandan | 7,00,000 | Stock | 3,00,000 |
Deepak | 5,00,000 | Debtors | 2,00,000 |
Elvish | 3,00,000 | Cash | 1,00,000 |
General Reserve | 4,50,000 | ||
Creditors | 13,50,000 | ||
Total | 33,00,000 | Total | 33,00,000 |