
The ratio \(\frac{E_1}{E_2}\) will be
\(E_1 = \frac{1}{2}(2C)V^2\)
\(⇒ E_1 = CV^2...(i)\)
\(E_2 = \frac{1}{2}(5C)V^2+\frac{1}{2}\frac{(CV)^2}{5C}\)
= \(\frac{13}{5}CV^2\)
\(⇒\frac{E_1}{E_2} \)
= \(\frac{5}{13}\)
A circuit consisting of a capacitor C, a resistor of resistance R and an ideal battery of emf V, as shown in figure is known as RC series circuit. 
As soon as the circuit is completed by closing key S₁ (keeping S₂ open) charges begin to flow between the capacitor plates and the battery terminals. The charge on the capacitor increases and consequently the potential difference Vc (= q/C) across the capacitor also increases with time. When this potential difference equals the potential difference across the battery, the capacitor is fully charged (Q = VC). During this process of charging, the charge q on the capacitor changes with time t as
\(q = Q[1 - e^{-t/RC}]\)
The charging current can be obtained by differentiating it and using
\(\frac{d}{dx} (e^{mx}) = me^{mx}\)
Consider the case when R = 20 kΩ, C = 500 μF and V = 10 V.

The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel, for which we can easily calculate the total capacitance.
Read Also: Combination of Capacitors
When one terminal of a capacitor is connected to the terminal of another capacitors , called series combination of capacitors.
Capacitors can be connected in two types which are in series and in parallel. If capacitors are connected one after the other in the form of a chain then it is in series. In series, the capacitance is less.
When the capacitors are connected between two common points they are called to be connected in parallel.
When the plates are connected in parallel the size of the plates gets doubled, because of that the capacitance is doubled. So in a parallel combination of capacitors, we get more capacitance.
Read More: Types of Capacitors