Step 1: Given data.
Radius of circular plates, \( r = 10 \, \text{cm} = 0.1 \, \text{m} \)
Current, \( I = 0.15 \, \text{A} \)
Rate of change of potential difference, \( \frac{dV}{dt} = 7 \times 10^6 \, \text{V/s} \)
We need to find the distance between plates \( d \) (in meters), and then convert it to an integer (in mm).
Step 2: Relation between charging current and changing voltage.
The current through a charging capacitor is related to the rate of change of potential difference as:
\[
I = C \frac{dV}{dt}
\]
where \( C \) is the capacitance of the capacitor.
Step 3: Expression for capacitance of a parallel plate capacitor.
\[
C = \varepsilon_0 \frac{A}{d}
\]
where \( \varepsilon_0 = 8.85 \times 10^{-12} \, \text{F/m} \), \( A = \pi r^2 \).
Step 4: Substitute capacitance into the current equation.
\[
I = \varepsilon_0 \frac{A}{d} \frac{dV}{dt}
\]
\[
d = \varepsilon_0 A \frac{dV}{dt} \div I
\]
Step 5: Substitute known values.
\[
A = \pi (0.1)^2 = 3.14 \times 10^{-2} \, \text{m}^2
\]
\[
d = \frac{8.85 \times 10^{-12} \times 3.14 \times 10^{-2} \times 7 \times 10^6}{0.15}
\]
\[
d = \frac{1.946 \times 10^{-6}}{0.15} = 1.296 \times 10^{-5} \, \text{m}
\]
Step 6: Convert to millimeters.
\[
d = 1.296 \times 10^{-5} \, \text{m} = 1.296 \times 10^{-2} \, \text{mm} = 1320 \, \text{μm}
\]
Thus, the integer value of distance between the plates is:
Final Answer:
\[
\boxed{1320}
\]