A solid cylinder of radius R and length L have moment of inertia I1 and a second solid cylinder of radius R2 and length L2 cut from it have moment of inertia I2. Find 11/I2.
64
32
128
256
I1 = M(\((\frac{R^2}{4})\)+\((\frac{L_2}{12})\))
I1 = \((\frac{M}{4})\)(R2+\((\frac{L^2}{3})\))
M = ρπR2L
M2 = ρπ\((\frac{R^2}{8})\)L = \(\frac{M}{8}\)
I2 = \((\frac{M}{8})\)x(\((\frac{1}{4})\)[\((\frac{R^2}{4})\)+\((\frac{L_2}{12})\)]
= \((\frac{M}{128})\)[R2+\((\frac{L_2}{3})\)]
A cylindrical tube \(AB\) of length \(l\), closed at both ends, contains an ideal gas of \(1\) mol having molecular weight \(M\). The tube is rotated in a horizontal plane with constant angular velocity \(\omega\) about an axis perpendicular to \(AB\) and passing through the edge at end \(A\), as shown in the figure. If \(P_A\) and \(P_B\) are the pressures at \(A\) and \(B\) respectively, then (consider the temperature to be same at all points in the tube) 
As shown in the figure, radius of gyration about the axis shown in \(\sqrt{n}\) cm for a solid sphere. Find 'n'. 
When rod becomes horizontal find its angular velocity. It is pivoted at point A as shown. 
In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
Moment of inertia is defined as the quantity expressed by the body resisting angular acceleration which is the sum of the product of the mass of every particle with its square of a distance from the axis of rotation.
In general form, the moment of inertia can be expressed as,
I = m × r²
Where,
I = Moment of inertia.
m = sum of the product of the mass.
r = distance from the axis of the rotation.
M¹ L² T° is the dimensional formula of the moment of inertia.
The equation for moment of inertia is given by,
I = I = ∑mi ri²
To calculate the moment of inertia, we use two important theorems-