\(\sqrt{\frac{5}{3}}\)
\(\sqrt{\frac{4}{5}}\)
\(\sqrt{\frac{3}{5}}\)
\(\sqrt{\frac{14}{15}}\)
\(V=\sqrt{\frac{2gH}{1+\frac{K^2}{R^2}}}\)
\(\frac{V_{cylinder}}{V_{sphere}}\) =\(\sqrt{\frac{1+\frac{2}{5}}{1+{\frac{1}{2}}}}\)
=\(\sqrt{\frac{7}{5}\times\frac{2}{3}}\)
=\(\sqrt{\frac{14}{15}}\)
A body of mass 1000 kg is moving horizontally with a velocity of 6 m/s. If 200 kg extra mass is added, the final velocity (in m/s) is:
The velocity (v) - time (t) plot of the motion of a body is shown below :
The acceleration (a) - time(t) graph that best suits this motion is :
A wheel of a bullock cart is rolling on a level road, as shown in the figure below. If its linear speed is v in the direction shown, which one of the following options is correct (P and Q are any highest and lowest points on the wheel, respectively) ?
A wire of 60 cm length and mass 10 g is suspended by a pair of flexible leads in a magnetic field of 0.60 T as shown in the figure. The magnitude of the current required to remove the tension in the supporting leads is:
If $10 \sin^4 \theta + 15 \cos^4 \theta = 6$, then the value of $\frac{27 \csc^6 \theta + 8 \sec^6 \theta}{16 \sec^8 \theta}$ is:
If the area of the region $\{ (x, y) : |x - 5| \leq y \leq 4\sqrt{x} \}$ is $A$, then $3A$ is equal to
Let $A = \begin{bmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{bmatrix}$. If for some $\theta \in (0, \pi)$, $A^2 = A^T$, then the sum of the diagonal elements of the matrix $(A + I)^3 + (A - I)^3 - 6A$ is equal to
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
Let $C$ be the circle $x^2 + (y - 1)^2 = 2$, $E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on the $x$-axis and $y$-axis respectively. Let the straight line $x + y = 3$ touch the curves $C$, $E_1$, and $E_2$ at $P(x_1, y_1)$, $Q(x_2, y_2)$, and $R(x_3, y_3)$ respectively. Given that $P$ is the mid-point of the line segment $QR$ and $PQ = \frac{2\sqrt{2}}{3}$, the value of $9(x_1 y_1 + x_2 y_2 + x_3 y_3)$ is equal to
The velocity with which one object moves with respect to another object is the relative velocity of an object with respect to another. By relative velocity, we can further understand the time rate of change in the relative position of one object with respect to another.
It is generally used to describe the motion of moving boats through water, airplanes in the wind, etc. According to the person as an observer inside the object, we can compute the velocity very easily.
The velocity of the body A – the velocity of the body B = The relative velocity of A with respect to B
V_{AB} = V_{A} – V_{B}
Where,
The relative velocity of the body A with respect to the body B = V_{AB}
The velocity of the body A = V_{A}
The velocity of body B = V_{B}