The major products obtained from the reactions in List-II are the reactants for the named reactions mentioned in List-I. Match each entry in List-I with the appropriate entry in List-II and choose the correct option.
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is:
An electrochemical cell is fueled by the combustion of butane at 1 bar and 298 K. Its cell potential is $ \frac{X}{F} \times 10^3 $ volts, where $ F $ is the Faraday constant. The value of $ X $ is ____.
Use: Standard Gibbs energies of formation at 298 K are:
$ \Delta_f G^\circ_{CO_2} = -394 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{water} = -237 \, \text{kJ mol}^{-1}; \quad \Delta_f G^\circ_{butane} = -18 \, \text{kJ mol}^{-1} $
The solubility of barium iodate in an aqueous solution prepared by mixing 200 mL of 0.010 M barium nitrate with 100 mL of 0.10 M sodium iodate is $X \times 10^{-6} \, \text{mol dm}^{-3}$. The value of $X$ is ------.
Use: Solubility product constant $(K_{sp})$ of barium iodate = $1.58 \times 10^{-9}$
It is the property of subatomic particles that experiences a force when put in an electric and magnetic field.
It is a property associated with each point in space when charge is present in any form. The magnitude and direction of the electric field are expressed by E, called electric field strength or electric field intensity.
Electric charges are of two types: Positive and Negative. It is commonly carried by charge carriers protons and electrons.
Various properties of charge include the following :-
Two kinds of electric charges are there :-
When there is an identical number of positive and negative charges, the negative and positive charges would cancel out each other and the object would become neutral.