Work Done in Expanding a Soap Bubble:
The work \( W \) done in increasing the surface area of a soap bubble is given by:
\[ W = \Delta U = S \Delta A \] where \( S \) is the surface tension and \( \Delta A \) is the increase in surface area.
Calculate Initial and Final Surface Areas:
Initial radius \( r = 7 \, \text{cm} \).
Initial surface area \( A_i = 4\pi r^2 = 4\pi (7)^2 \, \text{cm}^2 \).
Suppose the new radius is \( R \). Then the final surface area \( A_f \) is:
\[ A_f = 4\pi R^2 \]
Calculate the Change in Surface Area \( \Delta A \):
\[ \Delta A = A_f - A_i = 4\pi R^2 - 4\pi (7)^2 = 4\pi (R^2 - 49) \]
Use the Work Done to Solve for \( R \):
Given \( W = 36960 \, \text{erg} \) and \( S = 40 \, \text{dyne/cm} \), we have:
\[ 36960 = 40 \times 4\pi (R^2 - 49) \]
Simplifying,
\[ 36960 = 160\pi (R^2 - 49) \]
Using \( \pi = \frac{22}{7} \):
\[ 36960 \, \text{erg} = \frac{40 \, \text{dyne}}{\text{cm}} 8\pi \left[(R)^2 - \left(\frac{7}{2}\right)^2\right] \, \text{cm}^2 \]
\[ r = 7 \, \text{cm} \]
Conclusion:
The new radius of the soap bubble is \( 7 \, \text{cm} \).
Two liquids A and B have $\theta_{\mathrm{A}}$ and $\theta_{\mathrm{B}}$ as contact angles in a capillary tube. If $K=\cos \theta_{\mathrm{A}} / \cos \theta_{\mathrm{B}}$, then identify the correct statement:
Let \( S = \left\{ m \in \mathbb{Z} : A^m + A^m = 3I - A^{-6} \right\} \), where
\[ A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix} \]Then \( n(S) \) is equal to ______.
The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is $ 4 \_\_\_\_\_$.
Let \( f : (0, \infty) \to \mathbb{R} \) be a twice differentiable function. If for some \( a \neq 0 \), } \[ \int_0^a f(x) \, dx = f(a), \quad f(1) = 1, \quad f(16) = \frac{1}{8}, \quad \text{then } 16 - f^{-1}\left( \frac{1}{16} \right) \text{ is equal to:}\]