For pendulum:
\[
T_{\text{max}} = mg + \frac{mv^2}{L} \tag{1}
\]
Given \( m = \frac{1}{4} \, \text{kg}, L = 1 \, \text{m}, g = 9.8 \, \text{m/s}^2 \) and amplitude \( A = \frac{1}{10} \, \text{m} \)
For SHM, \( K_{\text{max}} = \frac{1}{2} mv^2 = \frac{1}{2} m \omega^2 A^2 \)
Using \( \omega = \sqrt{\frac{g}{L}} \), we get:
\[
mv^2 = m \left( \frac{g}{L} \right) A^2 = m g \frac{A^2}{L}
\]
Substitute this into equation (1):
\[
T_{\text{max}} = 2mg + \frac{mgA^2}{L^2}
\]
Substituting the given values:
\[
T_{\text{max}} = 2 \times \frac{1}{4} \times 9.8 + \frac{1}{4} \times 9.8 \times \frac{101}{100}
\]
\[
T_{\text{max}} = \frac{98.98}{40}
\]
Therefore, \( x = 99 \)