Step 1: Adiabatic condition The adiabatic condition is given by:
\(TV^{\gamma-1} = \text{constant.}\)
For the initial and final states:
\(T(V)^{\frac{3}{2}-1} = T_f(2V)^{\frac{3}{2}-1}.\)
Simplify:
\(TV^{\frac{1}{2}} = T_f(2V)^{\frac{1}{2}},\)
\(TV\sqrt{V} = T_f\sqrt{2V}.\)
Cancel \(\sqrt{V}\):
\(T = T_f\sqrt{2}.\)
Solve for \(T_f\):
\(T_f = \frac{T}{\sqrt{2}}.\)
Step 2: Work done in adiabatic expansion The work done in an adiabatic process is given by:
\(W.D. = \frac{nR}{1-\gamma}\left[T_f - T\right].\)
Substitute \(T_f = \frac{T}{\sqrt{2}}, \gamma = \frac{3}{2},\) and \(n = 1\):
\(W.D. = \frac{R}{1-\frac{3}{2}}\left[\frac{T}{\sqrt{2}} - T\right].\)
Simplify:
\(W.D. = \frac{R}{-\frac{1}{2}}\left[\frac{T}{\sqrt{2}} - T\right],\)
\(W.D. = -2R\left[\frac{T}{\sqrt{2}} - T\right].\)
Factorize:
\(W.D. = 2RT\left[1 - \frac{1}{\sqrt{2}}\right].\)
Simplify further:
\(W.D. = RT\left[2 - \sqrt{2}\right].\)
Final Answer: \(RT\left[2 - \sqrt{2}\right].\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: