Step 1: Adiabatic condition The adiabatic condition is given by:
\(TV^{\gamma-1} = \text{constant.}\)
For the initial and final states:
\(T(V)^{\frac{3}{2}-1} = T_f(2V)^{\frac{3}{2}-1}.\)
Simplify:
\(TV^{\frac{1}{2}} = T_f(2V)^{\frac{1}{2}},\)
\(TV\sqrt{V} = T_f\sqrt{2V}.\)
Cancel \(\sqrt{V}\):
\(T = T_f\sqrt{2}.\)
Solve for \(T_f\):
\(T_f = \frac{T}{\sqrt{2}}.\)
Step 2: Work done in adiabatic expansion The work done in an adiabatic process is given by:
\(W.D. = \frac{nR}{1-\gamma}\left[T_f - T\right].\)
Substitute \(T_f = \frac{T}{\sqrt{2}}, \gamma = \frac{3}{2},\) and \(n = 1\):
\(W.D. = \frac{R}{1-\frac{3}{2}}\left[\frac{T}{\sqrt{2}} - T\right].\)
Simplify:
\(W.D. = \frac{R}{-\frac{1}{2}}\left[\frac{T}{\sqrt{2}} - T\right],\)
\(W.D. = -2R\left[\frac{T}{\sqrt{2}} - T\right].\)
Factorize:
\(W.D. = 2RT\left[1 - \frac{1}{\sqrt{2}}\right].\)
Simplify further:
\(W.D. = RT\left[2 - \sqrt{2}\right].\)
Final Answer: \(RT\left[2 - \sqrt{2}\right].\)
Let a line passing through the point $ (4,1,0) $ intersect the line $ L_1: \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} $ at the point $ A(\alpha, \beta, \gamma) $ and the line $ L_2: x - 6 = y = -z + 4 $ at the point $ B(a, b, c) $. Then $ \begin{vmatrix} 1 & 0 & 1 \\ \alpha & \beta & \gamma \\ a & b & c \end{vmatrix} \text{ is equal to} $