The number of \( ^{14}C \) atoms after a given time can be calculated using the formula:
\[
N(t) = N_0 e^{-\lambda t}
\]
where:
- \( N_0 \) is the initial number of atoms,
- \( \lambda \) is the decay constant, and
- \( t \) is the time.
First, we calculate the number of \( ^{14}C \) atoms at \( t = 8 \times 10^3 \) years using the logarithmic form:
\[
\log_{10} N(t) = \log_{10} N_0 - \frac{\lambda t}{2.303}
\]
Given:
- \( N_0 = 10^5 \),
- \( \lambda = 1.25 \times 10^{-4} \, \text{yr}^{-1} \),
- \( t = 8 \times 10^3 \, \text{years} \).
Substituting the values into the formula:
\[
\log_{10} N(t) = \log_{10} (10^5) - \frac{1.25 \times 10^{-4} \times 8 \times 10^3}{2.303}
\]
\[
\log_{10} N(t) = 5 - \frac{1}{2.303} \times 1.0 = 5 - 0.434 = 4.566
\]
Thus, the number of \( ^{14}C \) atoms is approximately \( 4.566 \) in log10.