A random variable $X$, distributed normally as $N(0,1)$, undergoes the transformation $Y = h(X)$, given in the figure. The form of the probability density function of $Y$ is (In the options given below, $a, b, c$ are non-zero constants and $g(y)$ is a piece-wise continuous function) 
A board has 16 squares as shown in the figure. Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:
Three distinct numbers are selected randomly from the set \( \{1, 2, 3, \dots, 40\} \). If the probability, that the selected numbers are in an increasing G.P. is \( \frac{m}{n} \), where \( \gcd(m, n) = 1 \), then \( m + n \) is equal to:
A positive-edge-triggered sequential circuit is shown below. There are no timing violations in the circuit. Input \( P_0 \) is set to logic ‘0’ and \( P_1 \) is set to logic ‘1’ at all times. The timing diagram of the inputs \( SEL \) and \( S \) are also shown below. The sequence of output \( Y \) from time \( T_0 \) to \( T_3 \) is _________.

Consider a part of an electrical network as shown below. Some node voltages, and the current flowing through the \( 3\,\Omega \) resistor are as indicated. 
The voltage (in Volts) at node \( X \) is _________. 

 
The 12 musical notes are given as \( C, C^\#, D, D^\#, E, F, F^\#, G, G^\#, A, A^\#, B \). Frequency of each note is \( \sqrt[12]{2} \) times the frequency of the previous note. If the frequency of the note C is 130.8 Hz, then the ratio of frequencies of notes F# and C is: