The formula for \( Q \) is given as:
\[
Q = X^{-2} Y^{3/2} Z^{-2/5}
\]
To find the maximum fractional error of \( Q \), we use the formula for propagation of errors.
For a function of several variables, the fractional error is given by:
\[
\frac{\Delta Q}{Q} = \left| \frac{\partial Q}{\partial X} \frac{\Delta X}{X} \right| + \left| \frac{\partial Q}{\partial Y} \frac{\Delta Y}{Y} \right| + \left| \frac{\partial Q}{\partial Z} \frac{\Delta Z}{Z} \right|
\]
For the given function, we calculate the partial derivatives with respect to \( X \), \( Y \), and \( Z \):
\[
\frac{\partial Q}{\partial X} = -2 X^{-3}, \quad \frac{\partial Q}{\partial Y} = \frac{3}{2} Y^{1/2}, \quad \frac{\partial Q}{\partial Z} = -\frac{2}{5} Z^{-7/5}
\]
Now, applying the error propagation formula, the fractional error in \( Q \) is:
\[
\frac{\Delta Q}{Q} = 2 \times \frac{\Delta X}{X} + \frac{3}{2} \times \frac{\Delta Y}{Y} + \frac{2}{5} \times \frac{\Delta Z}{Z}
\]
Substitute the given fractional errors for \( X \), \( Y \), and \( Z \):
\[
\frac{\Delta Q}{Q} = 2 \times 0.1 + \frac{3}{2} \times 0.2 + \frac{2}{5} \times 0.5
\]
Simplifying:
\[
\frac{\Delta Q}{Q} = 0.2 + 0.3 + 0.2 = 0.7
\]
Thus, the maximum fractional error in \( Q \) is \( 0.7 \).
Therefore, the correct answer is Option (1).