The correct answer is 18
I = 4.5 kg m2
\(FR=Iα\)
\(α=\frac{(12t–3t^2)×1.5}{4.5}=4t−t^2\)
\(w=∫αdt=2t^2–\frac{t^3}{3} \)
w=0
\(⇒t^2(2–\frac{t}{3})0 \)
t=6 sec
\(θ=∫_{0}^{6}[2^t2–\frac{t^3}{3}]dt=[\frac{2t^3}{3}–\frac{t^4}{12}]_{0}^{6}\)
\(=[\frac{2}{3}×6^3–\frac{6^4}{12}]=36\)
\(n=\frac{36}{2π}\)
\(=\frac{18}{π}\)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is:
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: