The correct answer is 18

I = 4.5 kg m2
\(FR=Iα\)
\(α=\frac{(12t–3t^2)×1.5}{4.5}=4t−t^2\)
\(w=∫αdt=2t^2–\frac{t^3}{3} \)
w=0
\(⇒t^2(2–\frac{t}{3})0 \)
t=6 sec
\(θ=∫_{0}^{6}[2^t2–\frac{t^3}{3}]dt=[\frac{2t^3}{3}–\frac{t^4}{12}]_{0}^{6}\)
\(=[\frac{2}{3}×6^3–\frac{6^4}{12}]=36\)
\(n=\frac{36}{2π}\)
\(=\frac{18}{π}\)
A wheel of radius $ 0.2 \, \text{m} $ rotates freely about its center when a string that is wrapped over its rim is pulled by a force of $ 10 \, \text{N} $. The established torque produces an angular acceleration of $ 2 \, \text{rad/s}^2 $. Moment of inertia of the wheel is............. kg m².

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.
Rotational motion can be defined as the motion of an object around a circular path, in a fixed orbit.
The wheel or rotor of a motor, which appears in rotation motion problems, is a common example of the rotational motion of a rigid body.
Other examples: