To solve \( \int_{0}^{\frac{\pi}{2}} \frac{x \sin x}{1 + \cos^2 x} \, dx \):
\begin{itemize}
\item Let \( I = \int_{0}^{\frac{\pi}{2}} \frac{x \sin x}{1 + \cos^2 x} \, dx \).
\item Substitute \( \cos x = t \), so \( -\sin x \, dx = dt \).
\item Change the limits accordingly:
\[
\text{When } x = 0, \, t = 1; \quad \text{When } x = \frac{\pi}{2}, \, t = 0.
\]
\item Rewrite the integral:
\[
I = \int_{1}^{0} \frac{-x}{1 + t^2} \, dt.
\]
Substitute back and simplify to evaluate \( I = \frac{\pi^2}{4} \).
\end{itemize}