To find the output current of the transformer, we can use the principles of conservation of energy and the efficiency of the transformer.
Given Values: Input power \( P_{\text{in}} = V_{\text{in}} \times I_{\text{in}} \).
\( V_{\text{in}} = 2300 \, V \) (input voltage).
\( I_{\text{in}} = 5 \, A \) (input current).
Efficiency \( \eta = 90\% = 0.9 \).
Output voltage \( V_{\text{out}} = 230 \, V \).
Calculating Input Power:
\( P_{\text{in}} = V_{\text{in}} \times I_{\text{in}} = 2300 \, V \times 5 \, A = 11500 \, W \).
Calculating Output Power: Since the transformer is 90% efficient:
\( P_{\text{out}} = \eta \times P_{\text{in}} = 0.9 \times 11500 \, W = 10350 \, W \).
Calculating Output Current: Using the output power and output voltage, the output current \( I_{\text{out}} \) can be calculated as:
\( P_{\text{out}} = V_{\text{out}} \times I_{\text{out}} \Rightarrow I_{\text{out}} = \frac{P_{\text{out}}}{V_{\text{out}}} = \frac{10350 \, W}{230 \, V} \).
Final Calculation:
\( I_{\text{out}} = 45 \, A \).
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: