Calculate the equivalent resistance \( R_{\text{eq}} \):
\[ R_{\text{eq}} = 4000 \, \Omega \]
Calculate the current:
\[ i = \frac{4}{4000} = \frac{1}{1000} \, \text{A} \]
Then,
\[ V_0 = \frac{1}{1000} \times 500 = 0.5 \, \text{V} \]
The current passing through the battery in the given circuit, is:
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: