Given: \( \sin 60^\circ = \frac{4}{3} \sin r \)
Then:
\( \sin r = \frac{3}{4} \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{8} \qquad (i) \)
\( \cos r = \sqrt{1 - \frac{27}{64}} = \sqrt{\frac{37}{64}} = \frac{\sqrt{37}}{8} \approx 0.75 \)
\( \tan r = \sqrt{\frac{27}{37}} \)
\( \frac{x}{1.5} = 0.85 \)
\( x = 0.85 \times 1.5 = 1.275 \text{ m} \)
\( \tan 30^\circ = \frac{y}{2.15 - 1.275} = 0.50 \)
\( y = \frac{0.875}{1.732} = 0.50 \)
So, the length of the pole above the water surface = \( \mathbf{0.50 \text{ m} = 50 \text{ cm}} \).
Snell’s Law relates the angle of incidence (\(i\)) and angle of refraction (\(r\)) for light passing through two different media with refractive indices \(n_1\) and \(n_2\):
\( n_1 \sin i = n_2 \sin r \)
In this case: - \( n_1 = 1 \) (air), - \( i = 60^\circ \) (since the angle with the surface is 30°), - \( n_2 = \frac{4}{3} \) (water).
Using Snell’s law:
\( \sin 60^\circ = \frac{4}{3} \sin r \)
Solving for \( \sin r \):
\( \sin r = \frac{3}{4} \sin 60^\circ = \frac{3}{4} \times \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{8} \)
We first find \( \cos r \):
\( \cos r = \sqrt{1 - \sin^2 r} = \sqrt{1 - \left(\frac{3\sqrt{3}}{8}\right)^2} = \sqrt{1 - \frac{27}{64}} = \sqrt{\frac{37}{64}} = \frac{\sqrt{37}}{8} \)
Now we calculate \( \tan r \):
\( \tan r = \frac{\sin r}{\cos r} = \frac{3\sqrt{3}/8}{\sqrt{37}/8} = \frac{3\sqrt{3}}{\sqrt{37}} \approx 0.85 \)
Let \( x \) be the horizontal length of the shadow. We have \( \tan r = \frac{x}{1.5 \, \text{m}} \), where 1.5 m is the depth of the water.
Thus:
\( x = 1.5 \times \tan r = 1.5 \times 0.85 = 1.275 \, \text{m} \)
Since the total length of the shadow is 2.15 m, the horizontal distance from the pole to the point where light enters the water is:
\( 2.15 - 1.275 = 0.875 \, \text{m} \)
Let \( y \) be the height of the pole above the water. Since the angle of incidence is 30° with the water surface, we have:
\( \tan 30^\circ = \frac{y}{0.875} \)
Solving for \( y \):
\( y = 0.875 \times \tan 30^\circ = 0.875 \times \frac{1}{\sqrt{3}} \approx 0.875 \times 0.577 = 0.50 \, \text{m} = 50 \, \text{cm} \)
The height of the pole above the water surface is \( \mathbf{50 \, \text{cm}} \).