Step 1: Relation between electric and magnetic fields
The relationship between the electric field \(E\) and magnetic field \(B\) is:
\[ E = cB, \]
where \(c = 3 \times 10^8 \, \text{m/s}\).
Substitute \(E = 60 \, \text{Vm}^{-1}\):
\[ 60 = 3 \times 10^8 \cdot B \implies B = \frac{60}{3 \times 10^8} = 2 \times 10^{-7} \, \text{T}. \]
Step 2: Calculate the frequency
The wavelength is given as:
\[ \lambda = 4 \, \text{mm} = 4 \times 10^{-3} \, \text{m}. \]
The wave velocity \(c\) is related to the frequency \(f\) as:
\[ c = f\lambda \implies f = \frac{c}{\lambda} = \frac{3 \times 10^8}{4 \times 10^{-3}} = \frac{3}{4} \times 10^{11} \, \text{Hz}. \]
Step 3: Angular frequency
The angular frequency \(\omega\) is given by:
\[ \omega = 2\pi f = 2\pi \cdot \frac{3}{4} \times 10^{11} = \frac{3\pi}{2} \times 10^{11}. \]
Thus:
\[ \omega = \frac{\pi}{2} \times 10^3. \]
Step 4: Determine the direction of the fields
Step 5: Equation of the magnetic field
The magnetic field \(B_z\) is:
\[ B_z = 2 \times 10^{-7} \sin\left[\frac{\pi}{2} \times 10^3 \left(x - 3 \times 10^8 t\right)\right] \hat{k}. \]
Final Answer: \[ B_z = 2 \times 10^{-7} \sin\left[\frac{\pi}{2} \times 10^3 \left(x - 3 \times 10^8 t\right)\right] \, \hat{k} \, \text{kT}. \]
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: