Given the problem of determining the equation for the magnetic field of an electromagnetic wave, we start by analyzing the provided information:
We aim to determine the equation for the magnetic field, \(\mathbf{B}\).
Therefore, the correct option is \( B_z = 2 \times 10^{-7} \sin \left[ \frac{\pi}{2} \times 10^3 \left( x - 3 \times 10^8 t \right) \right] \hat{k} \, \text{T} \).
Step 1: Relation between electric and magnetic fields
The relationship between the electric field \(E\) and magnetic field \(B\) is:
\[ E = cB, \]
where \(c = 3 \times 10^8 \, \text{m/s}\).
Substitute \(E = 60 \, \text{Vm}^{-1}\):
\[ 60 = 3 \times 10^8 \cdot B \implies B = \frac{60}{3 \times 10^8} = 2 \times 10^{-7} \, \text{T}. \]
Step 2: Calculate the frequency
The wavelength is given as:
\[ \lambda = 4 \, \text{mm} = 4 \times 10^{-3} \, \text{m}. \]
The wave velocity \(c\) is related to the frequency \(f\) as:
\[ c = f\lambda \implies f = \frac{c}{\lambda} = \frac{3 \times 10^8}{4 \times 10^{-3}} = \frac{3}{4} \times 10^{11} \, \text{Hz}. \]
Step 3: Angular frequency
The angular frequency \(\omega\) is given by:
\[ \omega = 2\pi f = 2\pi \cdot \frac{3}{4} \times 10^{11} = \frac{3\pi}{2} \times 10^{11}. \]
Thus:
\[ \omega = \frac{\pi}{2} \times 10^3. \]
Step 4: Determine the direction of the fields
Step 5: Equation of the magnetic field
The magnetic field \(B_z\) is:
\[ B_z = 2 \times 10^{-7} \sin\left[\frac{\pi}{2} \times 10^3 \left(x - 3 \times 10^8 t\right)\right] \hat{k}. \]
Final Answer: \[ B_z = 2 \times 10^{-7} \sin\left[\frac{\pi}{2} \times 10^3 \left(x - 3 \times 10^8 t\right)\right] \, \hat{k} \, \text{kT}. \]
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.
Consider the following two reactions A and B: 
The numerical value of [molar mass of $x$ + molar mass of $y$] is ___.