The time period $T$ is given by:
\[ T = \frac{2\pi m}{qB} = \frac{2\pi}{m \times 2} = 15 \]
The particle will be at point $P$ after time:
\[ t = \frac{1}{12} \, \text{s} = \frac{T}{12} \]
It is deviated by an angle:
\[ \theta = \frac{2\pi}{12} = 30^\circ \]
Thus, the velocity of the particle at point $P$ is:
\[ \vec{v} = 10\cos 30^\circ \hat{i} + 10\sin 30^\circ \hat{j} \] \[ \vec{v} = 10 \left(\frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right) \] \[ \vec{v} = 5\left(\sqrt{3} \hat{i} + \hat{j}\right) \]