Step 1: Velocity equation The velocity of the particle is given as:
\( v = \alpha \sqrt{x}. \)
At \( x = 0 \), the velocity is:
\( v = 0. \)
At \( x = d \), the velocity becomes:
\( v = \alpha \sqrt{d}. \)
Step 2: Work-Energy Theorem The work done by all forces is equal to the change in kinetic energy:
\( W.D = K_f - K_i, \)
where:
\( K = \frac{1}{2} mv^2. \)
Substitute the velocities:
\( W.D = \frac{1}{2} m (\alpha \sqrt{d})^2 - \frac{1}{2} m (0)^2. \)
Simplify:
\( W.D = \frac{1}{2} m (\alpha^2 d) - 0. \)
\( W.D = \frac{m \alpha^2 d}{2}. \)
Final Answer: \( \frac{m \alpha^2 d}{2}. \)
Let $ f: \mathbb{R} \to \mathbb{R} $ be a twice differentiable function such that $$ f''(x)\sin\left(\frac{x}{2}\right) + f'(2x - 2y) = (\cos x)\sin(y + 2x) + f(2x - 2y) $$ for all $ x, y \in \mathbb{R} $. If $ f(0) = 1 $, then the value of $ 24f^{(4)}\left(\frac{5\pi}{3}\right) $ is: