Step 1: Velocity equation The velocity of the particle is given as:
\( v = \alpha \sqrt{x}. \)
At \( x = 0 \), the velocity is:
\( v = 0. \)
At \( x = d \), the velocity becomes:
\( v = \alpha \sqrt{d}. \)
Step 2: Work-Energy Theorem The work done by all forces is equal to the change in kinetic energy:
\( W.D = K_f - K_i, \)
where:
\( K = \frac{1}{2} mv^2. \)
Substitute the velocities:
\( W.D = \frac{1}{2} m (\alpha \sqrt{d})^2 - \frac{1}{2} m (0)^2. \)
Simplify:
\( W.D = \frac{1}{2} m (\alpha^2 d) - 0. \)
\( W.D = \frac{m \alpha^2 d}{2}. \)
Final Answer: \( \frac{m \alpha^2 d}{2}. \)
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to: