Step 1: Velocity equation The velocity of the particle is given as:
\( v = \alpha \sqrt{x}. \)
At \( x = 0 \), the velocity is:
\( v = 0. \)
At \( x = d \), the velocity becomes:
\( v = \alpha \sqrt{d}. \)
Step 2: Work-Energy Theorem The work done by all forces is equal to the change in kinetic energy:
\( W.D = K_f - K_i, \)
where:
\( K = \frac{1}{2} mv^2. \)
Substitute the velocities:
\( W.D = \frac{1}{2} m (\alpha \sqrt{d})^2 - \frac{1}{2} m (0)^2. \)
Simplify:
\( W.D = \frac{1}{2} m (\alpha^2 d) - 0. \)
\( W.D = \frac{m \alpha^2 d}{2}. \)
Final Answer: \( \frac{m \alpha^2 d}{2}. \)
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is: