Two simple pendulums having lengths $l_{1}$ and $l_{2}$ with negligible string mass undergo angular displacements $\theta_{1}$ and $\theta_{2}$, from their mean positions, respectively. If the angular accelerations of both pendulums are same, then which expression is correct?
Let $ [.] $ denote the greatest integer function. If $$ \int_1^e \frac{1}{x e^x} dx = \alpha - \log 2, \quad \text{then} \quad \alpha^2 \text{ is equal to:} $$
If the area of the region $$ \{(x, y): |4 - x^2| \leq y \leq x^2, y \geq 0\} $$ is $ \frac{80\sqrt{2}}{\alpha - \beta} $, $ \alpha, \beta \in \mathbb{N} $, then $ \alpha + \beta $ is equal to:
Three distinct numbers are selected randomly from the set $ \{1, 2, 3, ..., 40\} $. If the probability that the selected numbers are in an increasing G.P. is $ \frac{m}{n} $, where $ \gcd(m, n) = 1 $, then $ m + n $ is equal to:
Simple Harmonic Motion is one of the most simple forms of oscillatory motion that occurs frequently in nature. The quantity of force acting on a particle in SHM is exactly proportional to the displacement of the particle from the equilibrium location. It is given by F = -kx, where k is the force constant and the negative sign indicates that force resists growth in x.
This force is known as the restoring force, and it pulls the particle back to its equilibrium position as opposing displacement increases. N/m is the SI unit of Force.
When a particle moves to and fro about a fixed point (called equilibrium position) along with a straight line then its motion is called linear Simple Harmonic Motion. For Example spring-mass system
The restoring force or acceleration acting on the particle should always be proportional to the displacement of the particle and directed towards the equilibrium position.
When a system oscillates angular long with respect to a fixed axis then its motion is called angular simple harmonic motion.
The restoring torque (or) Angular acceleration acting on the particle should always be proportional to the angular displacement of the particle and directed towards the equilibrium position.
Ξ€ β ΞΈ or Ξ± β ΞΈ
Where,