The work-energy theorem states that the work done on a particle is equal to the change in its kinetic energy. In this case, the retardation force is doing negative work, leading to a loss of kinetic energy.
Given \( a = -2x \), where \( a \) is acceleration and \( x \) is displacement. We can write acceleration as \( a = v \frac{dv}{dx} \), so:
\( v \frac{dv}{dx} = -2x \)
\( v \ dv = -2x \ dx \)
Integrating both sides from initial to final states:
\( \int_{v_1}^{v_2} v \ dv = -2 \int_0^x x \ dx \)
\( \frac{v_2^2}{2} - \frac{v_1^2}{2} = -x^2 \)
Multiplying by mass \( m/2 \), gives
\(KE _2 - KE_1 = \frac{1}{2}m(v_2^2 - v_1^2) = -mx^2 \)
The change in kinetic energy is \( \frac{1}{2}mv_2^2 - \frac{1}{2}mv_1^2 = -mx^2 \). Given \( m = 10 \text{ g} = 0.01 \text{ kg} = 10 \times 10^{-3} \text{ kg} = 10^{-2} \text{ kg} \).
\( \Delta KE = -mx^2 = -(10 \times 10^{-3} \text{ kg})x^2 = -10^{-2}x^2 \text{ J} \)
\( \Delta KE = -x^2 \times 10^{-2} \text{ J} \)
Comparing this with the given expression for loss of kinetic energy, \( -x^{-n} \frac{x^2 \times 10}{\frac{2}{J}} \), we find \( n = 2 \).
The value of \( n \) is \( \mathbf{2} \).
Let A = \(\begin{bmatrix} \log_5 128 & \log_4 5 \log_5 8 & \log_4 25 \end{bmatrix}\) \). If \(A_{ij}\) is the cofactor of \( a_{ij} \), \( C_{ij} = \sum_{k=1}^2 a_{ik} A_{jk} \), and \( C = [C_{ij}] \), then \( 8|C| \) is equal to:
A molecule with the formula $ \text{A} \text{X}_2 \text{Y}_2 $ has all it's elements from p-block. Element A is rarest, monotomic, non-radioactive from its group and has the lowest ionization energy value among X and Y. Elements X and Y have first and second highest electronegativity values respectively among all the known elements. The shape of the molecule is:
A transition metal (M) among Mn, Cr, Co, and Fe has the highest standard electrode potential $ M^{n}/M^{n+1} $. It forms a metal complex of the type $[M \text{CN}]^{n+}$. The number of electrons present in the $ e $-orbital of the complex is ... ...
Consider the following electrochemical cell at standard condition. $$ \text{Au(s) | QH}_2\text{ | QH}_X(0.01 M) \, \text{| Ag(1M) | Ag(s) } \, E_{\text{cell}} = +0.4V $$ The couple QH/Q represents quinhydrone electrode, the half cell reaction is given below: $$ \text{QH}_2 \rightarrow \text{Q} + 2e^- + 2H^+ \, E^\circ_{\text{QH}/\text{Q}} = +0.7V $$
0.1 mol of the following given antiviral compound (P) will weigh .........x $ 10^{-1} $ g.