We know:
\[ v_{\text{max}} = \omega A \quad \text{at mean position} \]
\[ \omega = \frac{2\pi}{T} \quad \text{and} \quad v_{\text{max}} = \frac{2\pi}{T} \times A \]
\[ v_{\text{max}} = \frac{2\pi}{3.14} \times 0.06 = 0.12 \, \text{m/s} \]
\[ v_{\text{max}} = 12 \, \text{cm/s} \]
A particle is executing simple harmonic motion with a time period of 3 s. At a position where the displacement of the particle is 60% of its amplitude, the ratio of the kinetic and potential energies of the particle is:
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
Find the IUPAC name of the compound.
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32