We know:
\[ v_{\text{max}} = \omega A \quad \text{at mean position} \]
\[ \omega = \frac{2\pi}{T} \quad \text{and} \quad v_{\text{max}} = \frac{2\pi}{T} \times A \]
\[ v_{\text{max}} = \frac{2\pi}{3.14} \times 0.06 = 0.12 \, \text{m/s} \]
\[ v_{\text{max}} = 12 \, \text{cm/s} \]
A particle is executing simple harmonic motion with a time period of 3 s. At a position where the displacement of the particle is 60% of its amplitude, the ratio of the kinetic and potential energies of the particle is: