Step 1: Time period of a spring-mass system is
\[
T = 2\pi \sqrt{\frac{m}{k}}
\]
Step 2: Apply time period formula for both masses
Let \(T_1\) and \(T_2\) be the time periods for masses 4 kg and 9 kg, respectively. Then,
\[
T_1 = 2\pi \sqrt{\frac{4}{k}}, \quad T_2 = 2\pi \sqrt{\frac{9}{k}}
\]
Given: \(T_2 - T_1 = 0.2\pi\)
\[
2\pi\left(\sqrt{\frac{9}{k}} - \sqrt{\frac{4}{k}}\right) = 0.2\pi
\Rightarrow 2\left(\sqrt{9} - \sqrt{4}\right)\cdot \frac{1}{\sqrt{k}} = 0.2
\Rightarrow 2(3 - 2)\cdot \frac{1}{\sqrt{k}} = 0.2
\]
\[
\frac{2}{\sqrt{k}} = 0.2 \Rightarrow \sqrt{k} = 10 \Rightarrow k = 100~\text{N m}^{-1}
\]