Step 1: Given data.
Capacitance, \( C = 1 \, \mu F = 1 \times 10^{-6} \, F \)
Potential difference, \( V = 20 \, V \)
Distance between plates, \( d = 1 \, \mu m = 1 \times 10^{-6} \, m \)
Step 2: Formula for energy density.
Energy density (\( u \)) between the plates of a capacitor is given by:
\[
u = \frac{1}{2} \varepsilon_0 E^2
\]
where \( E \) is the electric field and \( \varepsilon_0 = 8.854 \times 10^{-12} \, F/m \).
Step 3: Relation between \( E \), \( V \), and \( d \).
The electric field between the plates is:
\[
E = \frac{V}{d}
\]
Substitute the given values:
\[
E = \frac{20}{1 \times 10^{-6}} = 2 \times 10^{7} \, V/m.
\]
Step 4: Substitute in the energy density formula.
\[
u = \frac{1}{2} \times 8.854 \times 10^{-12} \times (2 \times 10^7)^2
\]
\[
u = 0.5 \times 8.854 \times 10^{-12} \times 4 \times 10^{14}
\]
\[
u = 17.708 \times 10^{2} = 1.77 \times 10^{3} \, J/m^3.
\]
Approximating gives:
\[
u \approx 1.8 \times 10^3 \, J/m^3.
\]
Final Answer:
\[
\boxed{1.8 \times 10^3 \, J/m^3}
\]