For a nucleus:
Volume: \[ V = \frac{4}{3} \pi R^3 \]
Relationship for the radius:
\[ R = R_0 \left( A \right)^{1/3} \]
Substitute \( R \) in the volume equation:
\[ V = \frac{4}{3} \pi \left( R_0 (A)^{1/3} \right)^3 A \]
Simplifying:
\[ \Rightarrow \frac{V_2}{V_1} = \frac{A_2}{A_1} = 4 \]
For a nucleus, the volume \( V \) is proportional to \( A \), the mass number, given by:
\[ V = \frac{4}{3}\pi R^3, \]where the radius \( R \) of a nucleus is proportional to the cube root of its mass number \( A \):
\[ R = R_0 A^{1/3}. \]Thus, the volume \( V \) of a nucleus can be expressed as:
\[ V \propto A. \]Since \( A_2 = 4A_1 \), the ratio of volumes is:
\[ \frac{V_2}{V_1} = \frac{A_2}{A_1} = 4. \]In the given figure, the blocks $A$, $B$ and $C$ weigh $4\,\text{kg}$, $6\,\text{kg}$ and $8\,\text{kg}$ respectively. The coefficient of sliding friction between any two surfaces is $0.5$. The force $\vec{F}$ required to slide the block $C$ with constant speed is ___ N.
(Given: $g = 10\,\text{m s}^{-2}$) 
Two circular discs of radius \(10\) cm each are joined at their centres by a rod, as shown in the figure. The length of the rod is \(30\) cm and its mass is \(600\) g. The mass of each disc is also \(600\) g. If the applied torque between the two discs is \(43\times10^{-7}\) dyne·cm, then the angular acceleration of the system about the given axis \(AB\) is ________ rad s\(^{-2}\).

Match the LIST-I with LIST-II for an isothermal process of an ideal gas system. 
Choose the correct answer from the options given below: