The linear width of the central maximum is given by the formula:
\[ W = \frac{2\lambda D}{a} \]
where:
Substituting the values:
\[ W = \frac{2 \times 6 \times 10^{-7} \times 0.2}{1 \times 10^{-5}} = 24 \, \text{mm} \]
Thus, the correct answer is Option (2).
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to:
The largest $ n \in \mathbb{N} $ such that $ 3^n $ divides 50! is: