For the KΞ±-series, the wavelength \( \lambda \) is related to the atomic number \( Z \) using the formula:
\[ \frac{1}{\lambda} = R \left( Z - 1 \right)^2 \left( 1 - \frac{1}{4} \right) \] where \( R \) is the Rydberg constant. Simplifying this expression: \[ \frac{1}{\lambda} = \frac{3}{4} R (Z - 1)^2 \]
\[ r = 2 \quad \Rightarrow \quad r = \frac{(Z - 1)^2}{(Z - 6)^2} \times 2 \] Substituting \( Z = 46 \): \[ r = \frac{(46 - 1)^2}{(46 - 6)^2} \times 2 = \frac{45^2}{40^2} \times 2 \] Simplifying: \[ r = \frac{2025}{1600} \times 2 = 2.53 \]
Sliding contact of a potentiometer is in the middle of the potentiometer wire having resistance \( R_p = 1 \, \Omega \) as shown in the figure. An external resistance of \( R_e = 2 \, \Omega \) is connected via the sliding contact.
The current \( i \) is :