1. Given Equation for \( \lambda_{\alpha} \):
We are given the following equation for \( \lambda_{\alpha} \):
$ \frac{1}{\lambda_{\alpha}} = \frac{3}{4} R (Z - 1)^2 p $
2. Expression for \( \lambda_{\text{cut}} \):
We also have the expression for \( \lambda_{\text{cut}} \):
$ \lambda_{\text{cut}} = \frac{hc}{eV} $
3. Ratio for Same Beam:
For the same beam, the ratio is:
$ \text{Ratio} \propto \frac{1}{(Z - 1)^2} $
4. Finding the Value of \( Z \) and \( x \):
We are given the relationship between \( Z \) and \( x \):
$ \frac{Z}{x} = \frac{40^2}{45^2} \Rightarrow x = \frac{45^2}{40^2} \times 2.53 \approx 2.53 $
5. Final Calculation:
Using the given values and simplifying:
$ x \approx 2.53 $
To solve the problem, we analyze the X-ray emission characteristics and the ratio \(r\) of wavelengths for two metal targets.
1. Background:
The cut-off wavelength \(\lambda_{\min}\) of X-rays produced by bombarding electrons of energy \(E = eV\) is given by:
\[
\lambda_{\min} = \frac{hc}{eV}
\]
It depends only on the energy of the electron beam and is independent of the target atomic number \(Z\).
2. Wavelength of \(K_{\alpha}\) line:
The \(K_{\alpha}\) X-ray line is due to the transition of an electron from the \(L\)-shell (n=2) to the \(K\)-shell (n=1). Its wavelength is approximately given by Moseleyβs law:
\[
\frac{1}{\lambda_{K_{\alpha}}} = R (Z - 1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2}\right) = R (Z - 1)^2 \frac{3}{4}
\]
where \(R\) is the Rydberg constant.
Rearranged:
\[ \lambda_{K_{\alpha}} = \frac{4}{3 R (Z - 1)^2} \]3. Ratio \(r\) for the first target (Z = 46):
Given:
\[
r = \frac{\lambda_{K_{\alpha}}}{\lambda_{\min}} = 2
\]
Since \(\lambda_{\min}\) depends only on the electron energy (constant for both targets), write:
\[
\lambda_{\min} = \frac{\lambda_{K_{\alpha}}}{r} = \frac{4}{3 R (46 - 1)^2 \times 2} = \frac{2}{3 R \times 45^2}
\]
4. Calculate ratio \(r\) for second target \(Z=41\):
\[
\lambda_{K_{\alpha}}^{(2)} = \frac{4}{3 R (41 - 1)^2} = \frac{4}{3 R \times 40^2}
\]
\[
r_2 = \frac{\lambda_{K_{\alpha}}^{(2)}}{\lambda_{\min}} = \frac{\frac{4}{3 R \times 40^2}}{\frac{2}{3 R \times 45^2}} = \frac{4}{3 R \times 40^2} \times \frac{3 R \times 45^2}{2} = \frac{4 \times 45^2}{2 \times 40^2} = 2 \times \frac{45^2}{40^2}
\]
Calculate numerical value:
\[
r_2 = 2 \times \left(\frac{45}{40}\right)^2 = 2 \times \left(\frac{9}{8}\right)^2 = 2 \times \frac{81}{64} = \frac{162}{64} = 2.53
\]
Final Answer:
\[
\boxed{2.53}
\]
Assuming in forward bias condition there is a voltage drop of \(0.7\) V across a silicon diode, the current through diode \(D_1\) in the circuit shown is ________ mA. (Assume all diodes in the given circuit are identical) 


For the given logic gate circuit, which of the following is the correct truth table ? 
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?